Skip to main content Skip to secondary navigation

The Clinical Setting

Main content start

[go to the annotated version]

For decades, the vision of an AI-powered clinician’s assistant has been a near cliché. Although there have been successful pilots of AI-related technology in healthcare,[62] the current healthcare delivery system unfortunately remains structurally ill-suited to absorb and deploy rapid advances. Incentives provided by the Affordable Care Act have accelerated the penetration of electronic health records (EHRs) into clinical practice, but implementation has been poor, eroding clinicians' confidence in their usefulness. A small group of companies control the EHR market, and user interfaces are widely considered substandard, including annoying pop-ups that physicians routinely dismiss. The promise of new analytics using data from EHRs, including AI, remains largely unrealized due to these and other regulatory and structural barriers.

Looking ahead to the next fifteen years, AI advances, if coupled with sufficient data and well-targeted systems, promise to change the cognitive tasks assigned to human clinicians. Physicians now routinely solicit verbal descriptions of symptoms from presenting patients and, in their heads, correlate patterns against the clinical presentation of known diseases. With automated assistance, the physician could instead supervise this process, applying her or his experience and intuition to guide the input process and to evaluate the output of the machine intelligence. The literal “hands-on” experience of the physician will remain critical. A significant challenge is to optimally integrate the human dimensions of care with automated reasoning processes.

To achieve future advances, clinicians must be involved and engaged at the outset to ensure that systems are well-engineered and trusted. Already, a new generation of more tech savvy physicians routinely utilize specialized apps on mobile devices. At the same time, workloads on primary care clinicians have increased to the point that they are grateful for help from any quarter. Thus, the opportunity to exploit new learning methods, to create structured patterns of inference by mining the scientific literature automatically, and to create true cognitive assistants by supporting free-form dialogue, have never been greater. Provided these advances are not stymied by regulatory, legal, and social barriers, immense improvements to the value of healthcare are within our grasp.

 


[62] Katherine E. Henry, David N. Hager, Peter J. Pronovost, and Suchi Saria, “A Targeted Real-time Early Warning Score (TREWScore) for Septic Shock,” Science Translational Medicine 7, (299), 299ra122.

Cite This Report

Peter Stone, Rodney Brooks, Erik Brynjolfsson, Ryan Calo, Oren Etzioni, Greg Hager, Julia Hirschberg, Shivaram Kalyanakrishnan, Ece Kamar, Sarit Kraus, Kevin Leyton-Brown, David Parkes, William Press, AnnaLee Saxenian, Julie Shah, Milind Tambe, and Astro Teller.  "Artificial Intelligence and Life in 2030." One Hundred Year Study on Artificial Intelligence: Report of the 2015-2016 Study Panel, Stanford University, Stanford, CA,  September 2016. Doc: http://ai100.stanford.edu/2016-report. Accessed:  September 6, 2016.

Report Authors

AI100 Standing Committee and Study Panel 

Copyright

© 2016 by Stanford University. Artificial Intelligence and Life in 2030 is made available under a Creative Commons Attribution-NoDerivatives 4.0 License (International): https://creativecommons.org/licenses/by-nd/4.0/.