AI Policy, Now and in the Future
The measure of success for AI applications is the value they create for human lives. In that light, they should be designed to enable people to understand AI systems successfully, participate in their use, and build their trust. Public policies should help ease society’s adaptation to AI applications, extend their benefits, and mitigate their inevitable errors and failures. Debate about how AI is deployed, including concerns about how privacy is protected and AI’s benefits fairly shared, should be encouraged. Given the speed with which AI technologies are being realized, and concomitant concerns about their implications, the Study Panel recommends that all layers of government acquire technical expertise in AI. Further, research on the fairness, security, privacy, and societal implications of AI systems should be encouraged by removing impediments and increasing private and public spending to support it.
Currently in the United States, at least sixteen separate agencies govern sectors of the economy related to AI technologies. Rapid advances in AI research and, especially, its applications require experts in these sectors to develop new concepts and metaphors for law and policy. Who is responsible when a self-driven car crashes or an intelligent medical device fails? How can AI applications be prevented from promulgating racial discrimination or financial cheating? Who should reap the gains of efficiencies enabled by AI technologies and what protections should be afforded to people whose skills are rendered obsolete? As people integrate AI more broadly and deeply into industrial processes and consumer products, best practices need to be spread, and regulatory regimes adapted.
While the Study Panel does not consider it likely that near-term AI systems will autonomously choose to inflict harm on people, it will be possible for people to use AI-based systems for harmful as well as helpful purposes. And though AI algorithms may be capable of making less biased decisions than a typical person, it remains a deep technical challenge to ensure that the data that inform AI-based decisions can be kept free from biases that could lead to discrimination based on race, sexual orientation, or other factors.
Faced with the profound changes that AI technologies can produce, pressure for “more” and “tougher” regulation is probably inevitable. Misunderstandings about what AI is and is not could fuel opposition to technologies with the potential to benefit everyone. Inappropriate regulatory activity would be a tragic mistake. Poorly informed regulation that stifles innovation, or relocates it to other jurisdictions, would be counterproductive.[2]
Fortunately, principles that guide successful regulation of current digital technologies provide a starting point. In privacy regulation, broad legal mandates coupled with tough transparency requirements and meaningful enforcement—rather than strict controls—encourage companies to develop processes and professional staff to enforce privacy controls, engage with outside stakeholders, and adapt their practices to technological advances. This in turn supports the development of professional trade associations and standards committees that spread best practices. In AI, too, regulators can strengthen a virtuous cycle of activity involving internal and external accountability, transparency, and professionalization, rather than narrow compliance.
A vigorous and informed debate about how to best steer AI in ways that enrich our lives and our society, while encouraging creativity in the field, is an urgent and vital need. AI technologies could widen existing inequalities of opportunity if access to them—along with the high-powered computation and large-scale data that fuel many of them—is unfairly distributed across society. These technologies will improve the abilities and efficiency of people who have access to them. Policies should be evaluated as to whether they foster democratic values and equitable sharing of AI’s benefits, or concentrate power and benefits in the hands of a fortunate few.
As this report documents, significant AI-related advances have already had an impact on North American cities over the past fifteen years, and even more substantial developments will occur over the next fifteen. Recent advances are largely due to the growth and analysis of large data sets enabled by the internet, advances in sensory technologies and, more recently, applications of “deep learning.” In the coming years, as the public encounters new AI applications in domains such as transportation and healthcare, they must be introduced in ways that build trust and understanding, and respect human and civil rights. While encouraging innovation, policies and processes should address ethical, privacy, and security implications, and should work to ensure that the benefits of AI technologies will be spread broadly and fairly. Doing so will be critical if Artificial Intelligence research and its applications are to exert a positive influence on North American urban life in 2030 and beyond.
[2] Kate Crawford, “Artificial Intelligence’s White Guy Problem,” The New York Times, June 25, 2016, accessed August 1, 2016, http://www.nytimes.com/2016/06/26/opinion/sunday/artificial-intelligences-white-guy-problem.html.
Cite This Report
Peter Stone, Rodney Brooks, Erik Brynjolfsson, Ryan Calo, Oren Etzioni, Greg Hager, Julia Hirschberg, Shivaram Kalyanakrishnan, Ece Kamar, Sarit Kraus, Kevin Leyton-Brown, David Parkes, William Press, AnnaLee Saxenian, Julie Shah, Milind Tambe, and Astro Teller. "Artificial Intelligence and Life in 2030." One Hundred Year Study on Artificial Intelligence: Report of the 2015-2016 Study Panel, Stanford University, Stanford, CA, September 2016. Doc: http://ai100.stanford.edu/2016-report. Accessed: September 6, 2016.
Report Authors
AI100 Standing Committee and Study Panel
Copyright
© 2016 by Stanford University. Artificial Intelligence and Life in 2030 is made available under a Creative Commons Attribution-NoDerivatives 4.0 License (International): https://creativecommons.org/licenses/by-nd/4.0/.